
From Coexpression to Coregulation: An
Approach to Inferring Transcriptional
Regulation among Gene Classes from

Large-Scale Expression Data

Eric Mjolsness
Jet Propulsion Laboratory

California Institute of Technology
Pasadena CA 91 109-8099

mj olsn ess @jpl. nasa. gov

Tobias Mann

Jet Propul sion Laboratory

California Institute of Technology
Pasadena CA 91 109-8099

mann @aig.jpl. n c_a gov

Rebecca Castafio

Jet Propulsion Laboratory

California Institute of Technology
Pasadena CA 91 109-8099

becky @ cig. jpl. nasa. gov

Barbara Wold

Division of Biology
California Institute of Technology

Pasadena CA 91 125
woldb@ its. cdtech, edu

Abstract

We provide preliminary evidence that existing algorithms for
inferring small-scale gene regulation networks from gene
expression data can be adapted to large-scale gene expression data
coming from hybridization microarrays. The essential steps are (1)
clustering many genes by their expression time-course data into a
minimal set of clusters of co-expressed genes, (2) theoretically
modeling the various concttions under which the time-courses are
measured using a continious-time analog recurrent neural network
for the cluster mean time-courses, (3) fitting such a regulatory
model to the cluster mean time courses by simulated annealing
with weight decay, and (4) analysing several such fits for
commonalities in the circuit parameter sets including the
connection matrices. This procedure can be used to assess the
adequacy of existing and future gene expression time-course data
sets for determining transcriptional regulatory relationships such as
co regu lati on.

1 Introduction

In a cell, genes can be turned "on" or "off' to varying degrees by the protein
products of other genes. When a gene is "on" it is transcribed to produce messenger
RNA (mRNA) which can subsequently be translated into protein molecules. Some
of these proteins are transcription factors which bind to DNA at specific sites and
thereby affect which genes are transcribed and how often. This trancriptional
regulation feedback circuitry provides a fundamental mechanism for information



processingin thecell. It governs differentiation into diverse cell types and many
other basic biological processes.

Recently, several new technologies have been developed for measuring the

"expression" of genes as mRNA or protein product, improvements in conventional
fluorescently labeled antibodies against proteins have been coupled with confocal

microscopy and image processing to partially automate the simultaneous
measurement of small numbers of proteins in large numbers of individual nuclei in
the fruit fly Drosophila melanogaster [1]. In a complementary way, the mRNA
levels of thousands of genes, each averaged over many cells, have been measured by

hybridization arrays for various species including the bucking yeast Saccharomyces
cerevisiae [2].

The hi gh-s pati al-resol utio n protein an tibo dy data has been qu anti tati vely mo deled by
"gene regulation network" circuit models [3] which use continuous-time, analog,
recurrent neural networks (Hopfield networks without an objective function) to
model transcriptional regulation [4][5]. This approach requires some machine
learning technique to infer the circuit parameters from the data, and a particular
variant of simulated annealing has proven effective [6][7]. Methods in current
biological use for analysing mRNA hybridization data do not infer regulatory
relationships, but rather simply cluster together genes with similar patterns of
expression across time andexperimental conditions [8][9]. In this paper, we explore
the extension of the gene circuit method to the mRNA hybridization data which has
much lower spatial resolution but can currently assay a thousand times more genes
than immunofluorescent image analysis.

The essential problem with using the gene circuit method, as employed for
immunoflourescence data, on hybridization data is that the number of connection
strength parameters grows between linearly and quattatically in the number of genes

(depending on sparsity assumptions) . This requires more data on each gene, and
even if that much data is available, simulated annealing for circuit inference does not
seem to scale well with the number of unknown parameters. Some form of

dimensionality reduction is called for. Fortunately dimensionality reduction is
available in the present practice of clustering the large-scale time course expression
data by genes, into gene clusters. In this way one can derive a small number of
cluster-mean time courses for "aggregated genes", and then fit a gene regulation
circuit to these cluster mean time courses. We will discuss details of how this

analysis can be performed and then interpreted A similar approach using somewhat
different al gori thms for clustering an d ci rcui t in ference has been taken by Hertz [10].

In the following, we will first summarize the data models and algorithms used, and
then report on preliminary experiments in applying those algorithms to gene
ex pres sion data for 2467 yeast genes [9 ][11 ]. Fi nail y we wi I1 discus s prospects for
and limitations of the approach.

2 Data Models and Algorithms

The data model is as follows. We imagine that there is a small, hidden regulatory

network of "aggregate genes" which regulate one another by the analog neural
network dynamics [3]

"Ci--_" = g



in whichv_ is the continuous-valued state variable for gene product i, Tq is the

matrix of positive, zero, or negative connections by which one transcription factor

can enhance or repress another, and gO is a nonlinear monotonic sigmoidal

activation function. When a particular matrix entry T0 is nonzero, there is a

regulatory "connection" from gene prodactj to gene i . The regulation is enhancing

if T is positive and repressing if it is negative. If T,.j is zero there is no

connection.

This network is run forwards from some initial condition and time-sampled to

generatea wild-type timecourse for the aggregate genes. In addition, various other
time courses can be generated under alternative experimental conditions by

manipulating the parameters. For example an entire aggregate gene (corresponding

to a cluster of real genes) could be removed from the circuit or otherwise modified to

represent mutants. External input conditions could be modeled as modifications to

h. Thus we get one or several time courses (trajectories) for the aggregate genes.

From such aggregate time courses, actual gene data is generated by addition of
Gaussian-distributed noise to the logarithms of the concentration variables. Each

time point in each cluster has its own scalar standard deviation parameter (and a
mean arising from the circuit dynamics). Optionally, each gene's expression data
may al so be multiplied by a time-i ndependent proportionality constant.

Given this data generation model and suitable gene expression data, the problem is
to infer gene cluster memberships and the circuit parameters for the aggregate genes'
regulatory relationships. Then, we would like to use the inferred cluster
memberships and regulatory circuitry to make testable biological predictions.

This data model departs from biological reality in many ways that could prove to be
important, both for inference and for predction. First, except for the Gaussian noise
model, each gene in a cluster is models as fully coregulated with every other one -
they are influenced in the same ways by the same regulatory connection strengths.
Second, the nonlinear circuit model must not only reflect transcriptional regulation,

but all other regulatory circuitry affecting measuredgene expression. Such circuitry
includes protein-protein regulatory interactions such as kinase-phosphatase
networks, actively controlled protein degradation (proteolysis), translational
regulation, and intercellular signaling where applicable.

Under this data model, one could formulate a joint Bayesian inference problem for
the clustering andcircuit inference aspects of fitting the data. But given the highly
provisional nature of the model, we simply apply in sequence an existing mixture-
of-Gaussians clustering algorithm to preprocess the data and reduce its
dimensionality, andthen an existing gene circuit inference algorithm. Presumably a
joint optimization algorithm could be obtainedby iterating these steps.

2.1 Clustering

A widely used clustering algorithm for mixure model estimation is Expectation-
Maximization (EM)[! 2]. We use EM with a diagonal covariance in the Gaussian,
so that for each feature vector component a (a combination of experimental condition

and time point in a time course) and cluster O_ there is a standard deviation
parameter O',a. In preprocessing, each concentration data point is divided by its

value at time zero and then a logarithm taken. The log ratios are clustered using
EM. Optionally, each gene's entire feature vector may be normalized to unit length
and the cluster centers likewise normalized daring the iterative EM algorithm.



In order to choose the number of clusters, k, we use the cross-validalion algorithm
described by Smyth [I 31. This involves computing the likelihood of each optimized
fit on a test set and averaging over runs and over eSvisions of the data into training
andtest sets. Then, we can examine the likelihood as a function of k in order to
choose k. Normally one would pick"k so as to maximize cross-validated likelihood.

However, in the present application we also want to reward small values of k which
lead to smaller circuits for the circuit inference phase of the algorithm. The choice
of k will be discussed in the next section.

2.2 Circuit Inference

We use the Lam-Delosme variant of simulated annealing (SA) to derive connection
strengths T, time constants z, and decay rates _,, as in previous work using this
gene circuit method [4][5]. We set h to zero. The score function which SA

optimizes is

it q

+ exp[B(Z Tij2 +Zx_ + ZZ2)]- l
ij i i

The first term represents the fit to data vi" The second term is a standard weight

decay term. The third term forces solutions to stay within a boun&d region in

weight space. We vary the weight decay coefficient W in order to encourage
relatively sparse connection matrix solutions.

3 Results

3.1 Data

We used the Sacchammyces cerevisiae data set of [9]. It includes three longer time
courses representing different ways to synchronize the normal cell cycle [1 1], and
five shorter time courses representing altered conditions. We used all eight time

courses for clustering,.but just 8 time points of one of the longer time courses
(alpha factor synchronized cell cycle) for the circuit inference. It is likely that
multiple long time courses under altered conditions will be required before strong
biological predictions can be made from inferred regulatory circuit models.

3.2 Clustering

We found that the most likely number of classes as determined by cross validation
was about 27, but that there is a broad plateau of high-likelihood cluster numbers
from 15 to 35 (Figure 1). This is similar to our results with another gene
expression data set for the nematode worm Caenorhabditis elegans supplied by
Stuart Kim; these more extensive clustering experiments are summarized in Figure
2. Clustering experiments with synthetic data is used to understand these results.
These experiments show that the cross-validated log likelihood curve can indicate the
number of clusters present in the data, justifying the use of the curve for that
purpose. In more detail, synthetic data generated from 14 20-dimensional spherical
Gaussian clusters were clustered using the EM/CV algorithm. The likelihoods

showed a sharp peak at k=14 unlike Figures 1 or 2. In another experiment , 14 20-
dimensional spherical Gaussian superclusters were used to generate second-level
clusters (3 subclusters per supercluster), which in turn generated synthetic data



points. This two-level hierarchical model was then clustered with the EM/CV

method. The likelihood curves (not shown) were quite similar to Figures 1 and 2,

with a higher-likelihood plateau from roughly 14 to 40.
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Fi gure 1. Cross-validated log-likelihood scores, displayed and averaged over 5 runs,

for EM clustering of S. cerevisiae gene expression data [9]. Horizontal axis: k, the

"requested" or maximal number of cluster centers in the fit. Some cluster centers go
unmatched to data. Vertical axis: log likelihood score for the fit, scatterplotted and
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Figure 2. Cross-validated log-likelihood scores, averaged over 13 runs, for EM

clustering of C. elegansgeneexpression datafromS. Kim's lab. Horizontal axis: k, the

"requested" or maximal number of cluster centers in the fit. Some cluster centers go
unmatched to data. Vertical axis: log likelihood score for the fit, as an average over 13

runs plus or minus one standard deviation. (Left) Fine-scale plot, k =2 to 60 in

increments of 2. (Right)Coarse-scaleplot, k=2 to 202 in increments of 10. Both plots

showan extended pl ateau of relati vely likely fits between roughly k =14 andk --40.

From Figures 1 and2 and the synthetic data experiments mentioned above, we can

guess a_ appropriate values for k which take into account both the measured

likelihood of clustering and the requirements for few parameters in circuit-fitting.



For example choosing k=15 clusters would put us at the beginning of the plateau,
losing very little duster likelihood in return for reducing the aggregate genes circuit
size from 27 to 15 players. The interpretation would be that there are about 15
superclusters in hierarchically clustered data, to which we will fit a 15-player
regulatory circuit. Much more aggr_sive would be to pick k=7 or 8 clusters, for a
relatively significant ci'op in log-likelihood in return for a further substantial
decrease in circuit size. An acceptable range of cluster numbers (and circuit sizes)
would seem to be k=8 to 15.

3.3 Gene Circuit Inference

It proved possibleto fit thek=15 timecourse using weight decay W=I but without
using hidden units. W=0 and W=3 gave less satisfactory results. Four of the 15
clusters are shown in Figure 3 for one good run (W=I). Scores for our first few
(unselected) runs at the current parameter settings are shown in Table 1. Each run
took between 24 and48 hours on one processor of an Sun Ultrasparc 60 computer.
Even with weight decay, it is possible that successful fits are really overfits with

this particular data si nee there are about twice as man}, parameters as data points.

Weight Decay Score Simulated Annealing Notes
W Moves

0 1.391 3140000

0 1. 656 2310000

1 0. 528 3010000

1 1.050 271000 0

3 1.417 2790000

Figure 3

Qualitative fit for most
clusters

Poor fit

Table 1. Score function parameters wereA=l.O, B=O.O1. Annealing runs statistics are
reportedwhen the temperature &oppedbelow O.0001. The two lowest-scoring (best) runs
occurred for W=I. More runs will determine whether weight decay W~I is a necessary
condition fora goodfit, or whetheronejust needs to takethe best of N runs and/or slow
do wn the simulated an nealing termperature co ntro 1.

There were a few significant similarities between the connection matrices computed
in the two lowest-scoring runs. Perhaps the most salient feature in the lowest-

scoring network was a set of cUrect fee_ack loops among its strongest connections:
cluster 8 both excitedand was inhibited by cluster 10, andcluster 10 excited and was
inhibited by cluster 15. This feature was preserved in the second-best run.
However, a systematic search for "coneensus circuitry" awaits more simulated
annealing runs. From parameter-counting one might expect that making robust and
unique regulatory predctions will require the use of more trajectory data taken under
substantially c_fferent con_tions. Such data is expected to be forthcoming as
hy bridizat ion ex pres sion technology is widely adopted.

4 Discussion

We have illustrated a procedure for deriving regulatory models from large-scale gene
expression data. As the data becomes more comprehensive in the number and nature
of concitions under which comparable time courses are measured, this procedure can
be used to determine when biological hypotheses about gene regulation can be
robustly derived from the data.
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Figure 3. Fourclusters (numbers 9-12)of a 15-cluster mixture of Gaussians model of
2467 genes each assayedoveran eight-point timecourse; clustermeans (shown as x) are
fi t to a gene regulation network model (shown as o).
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